Physics -Set 3

1)An object 4 cm high is placed 40 cm in from of a concave mirror of focal length 20 cm. find the distance from
the mirror, at which a screen be placed to obtain a sharp image.
a)40 cm
b)-40cm
c) 20cm
d)-20cm 2)1KWH is unit of
a)Time
b) Power
c) Energy
d) Stress
d) Siless
3) Find the focal length and nature of lens which should be placed in contact with a lens of focal length 10 cm so
that the power of the combination becomes 5 dioptre.
a) 20 cm concave
b) -20cm concave c) 20cm convex
d) -20 cm convex
d) 20 cm convex
4)Name the physical quantities whose dimensional formula is $M^1L^2T^{-2}$?
a) Work
b)momentum
c) surface tension
d)stress.
5)The vector perpendicular to is
a),
b),
(c),
d)
6)Two bodies are projected at angles θ and 90 - θ to the horizontal with the same speed. The ratio of their times of flight is
a) 1: 1,
b) $\tan\theta$:1,
c) 1: $\tan \theta$,
d) $\tan^2 \theta$: 1
7) A weight W rests on a rough horizontal plane of the angle of friction be θ , the least force that will move the
body along the plane will be
(a) W $\cos \theta$
b) W tan θ ,
c) W cot θ ,
d) W $\sin \theta$
8) For adiabatic process of an ideal gas the relation between T & V is
a) TV = constant,
b) $TV^{\gamma-1} = constant$,
c) $T^{\gamma-1}$ V= constant,
d) $T^{\gamma} V^{\gamma-1} = \text{constant}$.
9) When the distance between two charged particles is halved, the columb force between them becomes:
7) Then the distinct between two charged particles is narrou, the column force between them becomes.

a) One half,

b) one fourth,
c) double,
d) four times.
10)The path difference between the two waves
$Y_1 = a_1 \sin (wt - 2\pi x/\lambda)$ and
$Y_2 = a_2 \cos (wt - 2\pi x/\lambda + \theta) is$
a) $\lambda\theta/2\pi$,
b) $\lambda/2\pi(\theta+\pi/2)$
c) $2\pi/\lambda$ $(\theta - \pi/2)$
d) $2\pi\theta/\lambda$
11)A diode as rectifier converts
a) a.c. into d.c.,
b) d.c. into a.c.,
c) Varying d.c. current into constant d.c. current,d) High voltage into low voltage and vice versa.
12) When two parallel wires carry currents in the same direction,
(a) they attract each oher
(b) they repel each other
(c) magnetic forces on two wires are perpendicular to each other
(d) they do not experience any magnetic force.
13)An automobile travelling with a speed of 60 km/h, can brake to stop within a distance of 20 m.
If the car is going twice as fast, i.e. 120 km/h, the stopping distance will be
(a) 20 m
(b) 40 m
(c) 60 m
(d) 80 m.
14) A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
(a) 0.02
(b) 0.03
(c) 0.06
(d) 0.01.
15) A uniform chain of length 2 m is kept on a table such that a length of 60 cm hangs freely from the edge of the table. The total mass of the chain is 4 kg. What is the work done in pulling the entire chain on the table?

16) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the radius of earth, then which of the following is correct?

(a) d = 2h

(a) 7.2 J(b) 3.6 J(c) 120 J(d) 1200 J.

- (b) (b) d = h
- (c) d = h/2
- (d) d = 3h/2
- 17) A 20 cm long capillary tube is dipped in water. The water rises upto 8 cm. If the entire arrangement is put in a freely falling elevator, the length of water column in the capillary tube will be:
 - (a) 8 cm
 - (b) 10 cm
 - (c) 4 cm
 - (d) 20 cm
- 18) An a-particle of energy 5 MeV is scattered through 180° by a fixed uranium nucleus. The distance of the closest approach is of the order of
 - (a) $1 A^0$

 - (b) 10¹⁰ cm (c) 10 ¹² cm (d) 10 ¹⁵ cm
- 19) The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately:
 - (a) 540 nm
 - (b) 400 nm
 - (c) 310 nm
 - (d) 220 nm
- 20) The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4 cm from the centre is 54 pT. What will be its value at the centre of the loop?
 - (a) $250 \mu T$
 - (b) $150 \mu T$
 - (c) 125 µT
 - (d) $75 \mu T$

2. c

3.b

4.a

5.d

6.b

7.d

8.b

9.d

10.a

11.a

12.a

13.d

14.c

15.b

16.a

17.d

18.c

19.c

20.a